Planned Missing-Data Designs and Statistical Matching: A Smart Response to Minimising Total Survey Error?

Femke De Keulenaer and Robert Manchin *Gallup Europe*

Ga (si	alluj nce :	p Wo 2006	orld] , 140	Pol] + cc	l ountrie	es, annu	ial d	lata colle	ection))
GAI	LLUP	* Worl	d					Search Gallup.com		Search
HOME	POLITICS	ECONOMY	WELLBEING	WORLD	ELECTION 2012		SOCIAL	& ECONOMIC ANALYSIS	MANAGEMENT C	ONSULTING

May 25, 2012

Economic Crisis Has Lasting Effect on Wellbeing Worldwide

Wellbeing in negative territory in Middle East and North Africa

by Gale Muller and Julie Ray

March 15, 2011

Worldwide, Good Jobs Linked to Higher Wellbeing

Those who are self-employed tend to have the lowest wellbeing

by Jon Clifton and Jenny Marlar

June 22, 2011

Low-Income Britons Struggle With Their Wellbeing

Physical health, healthy behaviors, access to basics all worse for low-income Britons

by Anna Manchin

"In an ideal world,..."

TSE trade-offs

Well-being = multidimensional concept, with many predictors

- financial security
- health
- social contacts, etc.

LONG QUESTIONNAIRE

- Higher costs, smaller samples
- Lower response rates
- More item non-response, more measurement error

Two data sources: A and B (same target population)

 Y_1		Y_Q	X_1		X_P	Z_1		Z_R
y_{11}^A		y^A_{1Q}	x_{11}^A		x^A_{1P}			
y^A_{a1}		y^A_{aQ}	x^A_{a1}		x^A_{aP}		A	
$y^A_{n_A1}$		$y^A_{n_AQ}$	$x^A_{n_A1}$	••••	$x^A_{n_AP}$			
			x_{11}^{B}		x^B_{1P}	z_{11}^{B}		z^B_{1R}
E	3		x^B_{b1}		x^B_{bP}	z^B_{b1}		z^B_{bR}
			$x^B_{n_B1}$		$x^B_{n_BP}$	$z^B_{n_B1}$		$z^B_{n_BR}$

A and B share a set of *variables* X

	Y_1	 Y_Q	X_1	 X_P	Z_1	 Z_R
•	y_{11}^A	 y^A_{1Q}	x_{11}^A	 x^A_{1P}		
A	y^A_{a1}	 y^A_{aQ}	x_{a1}^A	 x^A_{aP}		
	$y^A_{n_A 1}$	 $y^A_{n_AQ}$	$x^A_{n_A 1}$	 $x^A_{n_AP}$		
			x_{11}^{B}	 x^B_{1P}	z_{11}^{B}	 z^B_{1R}
B			x_{b1}^B	 x^B_{bP}	z_{b1}^B	 z^B_{bR}
			$x^B_{n_B 1}$	 $x^B_{n_BP}$	$z^B_{n_B 1}$	 $z^B_{n_BR}$

But the *variables Y* and *Z* are not jointly observed

Pre-processing steps in applying statistical matching

- Choice of target variables Y and Z (not jointly observed)
 Example: well-being and net household income
- Identification of all common variables X (with the same marginal/joint distribution)
 + harmonisation step, if necessary
 Example: gender, age, marital status, level of education, employment status, health problems etc.
- Choice of **matching variables** (*linked to matching framework: e.g. parametric/non-parametric/mixed*)

Example data from Gallup World Poll (Bulgaria)

- Examples of statistical matching in R environment (StatMatch)
- Artificial data set derived from Gallup World Poll (±2000 respondents in Bulgaria)
- Data set split randomly in two (equal) parts:
 - rec.A and don.B share the variables X.vars
 - the respondents' WB score (y.var) is available in rec.A
 - net household income (z.var) is available in don.B
- Selecting "best" matching variables:
 - relationship between Y and X explored in rec.A
 - relationship between Z and X explored in don.B
 - RESULT: "best" predictors are gender, age, level of education, employment status and health problems

Non-parametric micro approaches

		Reci	pient		Donor				
ID	Gender	Age category	Education (in years)	Wellbeing	Gender	Age category	Education (in years)	Income	
1	Man	15-29	11	5	Man	15-29	12	9,130.4	
2	Man	30-49	16	9	Man	30-49	16	16,956.5	
3	Woman	30-49	11	7	Woman	30-49	11	5,151.3	
4	Woman	50-64	12	7	Woman	50-64	11	6,521.7	
5	Woman	64+	14	8	Woman	64+	14	12,234.5	

Random hot deck (donation classes)

Random selection of each donor from a "suitable" subset/donation class

Non-parametric micro approaches

		Reci	pient		Donor				
ID	Gender	Age category	Education (in years)	Wellbeing	Gender	Age category	Education (in years)	Income	
1	Man	15-29	11	5	Man	15-29	12	9,130.4	
2	Man	30-49	16	9	Man	30-49	16	16,956.5	
3	Woman	30-49	11	7	Woman	30-49	11	5,151.3	
4	Woman	50-64	12	7	Woman	50-64	11	6,521.7	
5	Woman	64+	14	8	Woman	64+	14	12,234.5	

Nearest neighbour distance hot deck

Function that searches, for each case in the recipient file, the nearest neighbour in the donor file

(to reduce computation effort, combined with donation classes)

- Distance functions: Manhattan, Gower's dissimilarity etc.
- Constrained and unconstrained matching (size of rec.A and don.B)

Conditional Independence (CI) assumption

 Traditional SM methods, that use the set of common variables X to match A and B, implicitly assume the conditional independence of Y and Z given X:

f(x,y,z) = f(y | x) x f(z | x) x f(x)

- Very strong assumption that usually does not hold in practice
- Solution: incorporate auxiliary information about the relationship between Y and Z
 - 1. a 3^{rd} file where (x,Y,Z) or (Y,Z) are jointly observed
 - 2. plausible value for inestimable parameter of (Y, Z|X) or (Y, Z)
- Alternative: assessing "uncertainty" (interval of plausible values)

Mixed methods

Three steps:

1) Estimation of parameters of two regression models (regression step)

rec.A: Y= α + β X

don.B: Z= δ + γ X

(= more parsimonious)

2) Data sets filled with "intermediate values"

 $z_a = z_a + e_a (a=1,...,n_A)$

 $y_{b} = y_{b} + e_{b}$ (a=1,...,n_B)

adding a random residual to predicted values

3) Each record in A is filled with a donor from B according to constrained distance hot deck (matching step)

Mahalanobis distance, considering both "intermediate" and "live" values (= "protection" against model misspecification)

Results of matching – some examples

	Descr	Descriptives of income variable						
	Mean	SD	Skewness	Kurtosis	& income			
"complete" file	9582.1	(7675.0)	3.23	19.94	.348			
"matched" files								
(non-par) distance hot deck	9478.5	(7437.8)	3.07	18.96	.172			
(mixed) ML estimates, rho.yz=0 (= CI)	9151.0	(6171.6)	2.41	2.41	.200			
(mixed) ML estimates, rho.yz=.22 (auxiliary info)	9177.2	(6219.6)	2.41	2.39	.318			
(mixed) MS estimates, rho.yz=.35	9151.4	(6171.1)	1.44	2.41	.344			

More "normal" distribution due to parametric approach

GALLUP Donation classes/matching variables: gender, age, education, employment and health problems Weak correlation (incorrect Cl assumption)

Discussion

- Opportunities
 - Reducing cost and response burden
 - Potential for using data with less measurement error etc.
- Challenges
 - Selection of best matching approach: (non-)parametric, distance function, etc.
 - "Advanced" topics: complex survey designs, etc.
 - Selection of matching variables (conditional independence)
 - How to deal with uncertainty in matching results?
 - Need for "good" auxiliary information

Thank you!

Contact: Femke De Keulenaer Gallup Europe, Brussels, Belgium

femke_de_keulenaer@gallup-europe.be

