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Gallup World Poll 
(since 2006, 140+ countries, annual data collection)
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“In an ideal world,…”                    TSE trade-offs

Well-being = multidimensional concept, with many predictors
- financial security
- health
- social contacts, etc.

LONG QUESTIONNAIRE
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LONG QUESTIONNAIRE

• Higher costs, smaller samples
• Lower response rates
• More item non-response, more measurement error



Two data sources: A and B (same target population)



A and B share a set of variables X



But the variables Y and Z are not jointly observed

Objective = 
investigate 
relationship 
between Y and Z

“Micro” vs. 
“Macro” 
approach



Pre-processing steps in applying statistical matching

• Choice of target variables Y and Z (not jointly observed)
Example: well-being and net household income

• Identification of all common variables X (with the same 
marginal/joint distribution) 
+ harmonisation step, if necessary+ harmonisation step, if necessary
Example: gender, age, marital status, level of education, 
employment status, health problems etc.

• Choice of matching variables (linked to matching 
framework: e.g. parametric/non-parametric/mixed)
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Example data from Gallup World Poll (Bulgaria)

� Examples of statistical matching in R environment (StatMatch)
� Artificial data set derived from Gallup World Poll (±2000 

respondents in Bulgaria)
� Data set split randomly in two (equal) parts: 

– rec.A and don.B share the variables X.vars
– the respondents’ WB score (y.var) is available in rec.A
– net household income (z.var) is available in don.B– net household income (z.var) is available in don.B

� Selecting “best” matching variables: 
– relationship between Y and X explored in rec.A
– relationship between Z and X explored in don.B
– RESULT: “best” predictors are gender, age, level of education, 

employment status and health problems
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Non-parametric micro approaches
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Random hot deck (donation classes)
Random selection of each donor from a “suitable” subset/donation class



Non-parametric micro approaches
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Nearest neighbour distance hot deck
Function that searches, for each case in the recipient file, the nearest 
neighbour in the donor file
(to reduce computation effort, combined with donation classes)

� Distance functions: Manhattan, Gower’s dissimilarity etc.
� Constrained and unconstrained matching (size of rec.A and don.B)



Conditional Independence (CI) assumption

� Traditional SM methods, that use the set of common variables X to 
match A and B, implicitly assume the conditional independence 
of Y and Z given X :
f (x,y,z) = f (y | x)  x  f (z | x)  x  f (x)

� Very strong assumption that usually does not hold in practice

Solution: incorporate auxiliary information about the relationship � Solution: incorporate auxiliary information about the relationship 
between Y and Z
1. a 3rd file where (x,Y,Z) or (Y,Z) are jointly observed
2. plausible value for inestimable parameter of (Y, Z|X) or (Y,Z)

� Alternative: assessing “uncertainty” (interval of plausible values)
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Mixed methods

Three steps:
1) Estimation of parameters of two regression models (regression step)

rec.A: Y=α+βX
don.B: Z=δ+γX

(= more parsimonious)
2) Data sets filled with “intermediate values”

za = za + ea (a=1,…,nA) za = za + ea (a=1,…,nA) 
yb = yb+ eb (a=1,…,nB) 
adding a random residual to predicted values

3) Each record in A is filled with a donor from B according to constrained 
distance hot deck (matching step)

Mahalanobis distance, considering both “intermediate” and “live” values
(= “protection” against model misspecification)



Results of matching – some examples

Descriptives of income variable Corr. WB 
& incomeMean SD Skewness Kurtosis

“complete” file 9582.1 (7675.0) 3.23 19.94 .348

“matched” files

(non-par) 
distance hot deck 9478.5 (7437.8) 3.07 18.96 .172

(mixed) ML estimates, 
9151.0 (6171.6) 2.41 2.41 .200

W
eak correlation (incorrect C

I assum
ption)

(mixed) ML estimates, 
rho.yz=0 (= CI) 9151.0 (6171.6) 2.41 2.41 .200

(mixed) ML estimates, 
rho.yz=.22 (auxiliary 
info)

9177.2 (6219.6) 2.41 2.39 .318

(mixed) MS estimates, 
rho.yz=.35 9151.4 (6171.1) 1.44 2.41 .344

13Donation classes/matching variables: 
gender, age, education, employment and health problems

W
eak correlation (incorrect C

I assum
ption)More “normal” distribution due to parametric approach



Discussion

� Opportunities
– Reducing cost and response burden
– Potential for using data with less measurement error etc.

� Challenges
– Selection of best matching approach: (non-)parametric, distance 

function, etc.
– “Advanced” topics: complex survey designs, etc.– “Advanced” topics: complex survey designs, etc.
– Selection of matching variables (conditional independence)
– How to deal with uncertainty in matching results?
– Need for “good” auxiliary information
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Thank you!

Contact:
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